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Abstract
This chapter summarizes the recent literature on peer effects in student outcomes at the elementary,
secondary, and post-secondary levels. Linear-in-means models find modest sized and statistically
significant peer effects in test scores. But the linear-in-means model masks considerable
heterogeneity in the effects experienced by different types of students. Using nonlinear models,
one prevalent finding is larger peer effects in which high ability students benefit from the presence
of other high ability students. Studies that stratify students by race and ability often find that
students are affected both by the racial composition of their peers and by the achievement of their
same-race peers. At the university level, several studies find modest sized effects from dormmate
and roommate background on own academic performance. For both university and high school
students, the measured peer effects on “social” outcomes such as drinking are larger than the
effects on academic outcomes. Many authors find substantial peer effects in drinking, drug use,
and criminal behavior. This chapter suggest areas for future investigation and data collection.
JEL classification: J0, I2
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1. INTRODUCTION AND OVERVIEW

Peer effects in education have recently received a great deal of attention from research-

ers: five of the most popular articles are cited collectively more than 2000 times.1

The potential importance of peers in the educational process has long been noted with

the influential Coleman Report (1966), Coleman (1968) being one well-known exam-

ple. As educational researchers make halting progress toward a deeper understanding

of the educational production function, many researchers and teachers have argued

that peer composition is as important a determinant of student outcomes as other

widely cited inputs including teacher quality, class size, and parental involvement. This

chapter reviews the empirical evidence on peer effects in elementary, secondary and

post-secondary education and concludes that within certain contexts and for certain

outcomes, peer effects are indeed a powerful determinant of why students turn out

the way they do.2

Motivating social scientists’ interest in peer effects is not a difficult task. If peer influ-

ences are a major factor in generating outcomes that include test scores, college going,

career choice, drug use, or teen pregnancy, then every parent, teacher, and policy maker

will care about the size and nature of peer effects.3 Epple and Romano (1998) show that

the size and nature of peer effects have large implications for the sorting of students into

schools and the distributional consequences of tuition voucher programs.

Defining what is meant by a peer effect is slightly more challenging. This chapter uses a

broad definition of peer effects to encompass nearly any externality in which peers’ back-

grounds, current behavior, or outcomes affect an outcome. By limiting peer effects to

externalities, market-based or price-based effects are excluded. For example if the families

in a particular county contribute to a demand shock for private schooling which raises or

lowers the dollar cost of private schooling to the individual, that is clearly a market-based

effect and not a peer effect. Externalities that work through class size are also excluded.4

What are included as peer effects are any other externalities that spill over from peers’ or

peers’ family backgroundor current actions. For example, if a student’s classmates havehigher
oogle Scholar search of “peer effects and education.”

ple and Romano (forthcoming) contains a comprehensive survey of theoretical models of peer effects and the

plications of these models.

arris (1998) famously argued that it is exclusively peers and not parental nurturing that determines child outcomes.

hile her thesis is almost surely an overstatement, the papers reviewed in this chapter will suggest that for certain

tcomes and certain student groups peers matter a great deal.

he main reason for this exclusion is that most economists consider the class size literature and the peer effects

erature to be addressing separate questions. Note that class size (like spending) may be an input that is relatively

sily set by policy makers while peer achievement or peer racial composition may be more difficult to alter.
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incoming ability and the student learns directly from her classmates, that is a peer effect. If the

classmates have higher incoming ability and this enables the teacher to teach at a higher level

or a more demanding pace, that is also a peer effect. If the student is disruptive and consumes

more of the teacher’s attention, thereby reducing her classmates’ test scores, that too is a peer

effect (Lazear (2001)). If the classmates’ high current achievement motivates the student

(through competition) to work harder, that is also a peer effect. If the student develops an

interest in athletics or in shoplifting because of her peers, those are also peer effects. Manski

(1993) defines endogenous effects as those that emanate from peers’ current outcomes

whereas exogenous effects are those that emanate from peers’ backgrounds.

Suppose that a student’s outcomes are improved because his peers’ families are actively

involved in insisting on teacher accountability or in finding a superstar principal. Such an

effect is considered a peer effect, even though these influences can also be simultaneously

classified as effects of teacher quality or principal quality. In short, there are a large number

of channels through which peer effects might operate. Identifying the precise channel

through which a given peer effect operates is a Herculean task and in many cases is asking

too much of the data. But researchers have been successful both in demonstrating the exis-

tence of peer effects and measuring the magnitudes of some of these effects. Many of these

same papers have suggested plausible mechanisms through which peer effects work.

In the last 15 years, economists have begun to provide crediblemeasurement and iden-

tification on the nature and size of peer effects.Onemethod frequently employed inmod-

ern studies is to rely upon some form of exogenous variation in the assignment of students

to schools, classrooms, or dorms (in the study of peer effects at the university or college

level). The other commonmethod is usemodelswith both school and student fixed effects

in an effort to control for the nearly inevitable self selection of students into schools and

classrooms. Below several dozen studies of both types are reviewed.

The picture that emerges is both fascinating and relatively coherent. At first glance,

results from the myriad peer effects studies would seem to be all over the map. Within

elementary and secondary schools, many studies find modestly large effects of

peer backgroundonown test scores (Hoxby (2000b),Vigdor (2006),Vigdor andNechyba

(2007), Betts and Zau (2004), Boozer and Cacciola (2001), Hanushek, Kain, Markman,

and Rivkin (2003)). However, Burke and Sass (2008) find little evidence that the peer

average background affects the average student’s achievement. Angrist and Lang (2004)

find that the busing of Metco students into suburban Boston schools has little effect on

the test scores of students in the receiving schools. And Imberman, Kugler, and Sacerdote

(2009) find only modest linear-in-means effects from the arrival of Katrina evacuees on

achievement in receiving schools in Louisiana and Houston, Texas.

These apparently contradictory results can be reconciled if we accept Hoxby and

Weingarth’s (2005) argument that the linear-in-means5 model of peer effects is not nec-

essarily the right model nor is it the most interesting one. Instead one can allow for
5 See below for definitions of the various models.
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peer effects to differ by a student’s own achievement and by whether changes in peer

group composition are generated by adding students at the top, middle, or bottom of

the ability distribution. Hoxby and Weingarth find that students at the bottom of the

test score distribution benefit significantly from the addition to their classroom of stu-

dents who are themselves at the 15th percentile of past test scores. Conversely, students

at the top decile of the test score distribution benefit strongly from the addition of

other classmates who are also at the top. Achievement for students in the middle tends

to less affected by peer composition.

Burke and Sass (2008), Lavy, Paserman, and Schlosser (2007) and most recently

Imberman, Kugler, and Sacerdote (2009) reinforce these findings. Lavy, Paserman, and

Schlosser (2007) find that high ability high school students in Israel benefit from the pres-

ence of other high ability students. Burke and Sass find at most small effects in linear-in-

means models, but large effects when they allow the effect to differ by own achievement

and the type of peer group change contemplated. Imberman, Kugler, and Sacerdote use

the unexpected arrival of Hurricane Katrina evacuees as a shock to peer groups and find

that high achieving students benefit the most from the arrival of high achieving peers and

are hurt the most by the arrival of low achieving peers.

The literature on peer effects in university and college settings also features an

appearance of contradictory results which can be reconciled upon deeper examination.

Many studies of peer effects in college rely on roommates and dormmates since these

are often the peer groups which can be easily identified and in some cases there is

quasi-random assignment of students to room and dorm groups. Sacerdote (2001),

Zimmerman (2003), and Stinebrickner and Stinebrickner (2006) find that roommates’

background and current achievement affect own achievement. Here current achieve-

ment is measured by college grade point average (GPA) and background is measured

by incoming test scores and high school class rank or high school GPA.

Foster (2006) and Lyle (2007) find no evidence that roommates’ or hallmates’ back-

ground affects own college GPA. But the effects found in the original roommates stud-

ies are modest enough that it easy to believe that differences across institutional settings

and differences across student bodies would either eliminate roommate and dormmate

influences or make such influences difficult to detect. Using data from the U.S. Air

Force Academy, Carrell, Fullerton, and West (2008) examine peer effects in an unusual

context in which the full peer group is known and the institution forces a great deal of

peer interaction. In that setting, they find large peer effects.

Perhaps the more interesting result from the literature on peer effects in higher educa-

tion is the fact that while academic achievement (college GPA) is affected modestly by

roommates and dormmates, the effects on more “social” outcomes are large. Duncan,

Boisjoly, Kremer, Levy, and Eccles (2005) find that males who themselves binge drank

in high school have a fourfold increase in their number of college binge drinking episodes

(per month) when assigned a roommate who also reported binge drinking in high school.
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Similarly Sacerdote (2001) finds that a student is much more likely to join a fraternity or

sorority when surrounded by roommates or dormmates who join.

Finally, there is a burgeoning literature on peer effects in crime, drug use, and teen-

age pregnancy among high school and middle school students. Like the college litera-

ture on peer effects in social outcomes, the peer effects on drug use, criminal behavior,

and teen pregnancy for these younger students are estimated to be quite large. (Gaviria

and Raphael (2001), Case and Katz (1991), Kling, Ludwig, and Katz (2005)). For

example, Gaviria and Raphael (2001) find that moving a student from a school in

which 13% of the peers’ parents have a drug problem to a school in which 40% of

the parents have a drug problem increases the student’s own drug use by 7 percentage

points relative to a mean drug use rate of 14%.
2. MODELS OF PEER EFFECTS

The most commonly estimated model in the peer effects literature is the linear-in-

means model in which the outcome Y is some function of a student’s background

characteristics, her peers’ average background characteristics, and the student’s peers’

average outcome. More formally this can be written as:

Yi ¼ aþ b1 � Y�i þ g1 � Xi þ g2 � X�i þ ei ð4:1Þ
where Yi represents the student’s outcome, Y�i represents her peers’ average outcome,

Xi is a vector of the student’s background characteristics, and X�i is a vector of her

peers’ average background characteristics. This model has the virtue of simplicity.

Equation (4.1) encompasses both endogenous effects from the peers’ current outcomes

and exogenous effects from the peers’ background. This model of course constrains the

size of either peer effect (b1 or g2) to be the same regardless of where the student falls

within the distribution of student background or ability.

And by definition all peer effects work through the mean. Effects from any other

aspects of the distribution of the peers’ background are ruled out. For example, effects

from mean-preserving increases in the variance of the peers’ ability are assumed to

be zero as are the potential effects thatmight work through themost able or least able peer.

Despite its popularity in use, there are two major problems with the linear-in-

means model in practice. (These problems are pointed out most notably by Hoxby

(2000b) and Hoxby and Weingarth (2005).) First, from a social welfare point of view

the model is not that interesting since the model constrains the net effect from reassign-

ment of peers to different classrooms or groups to be zero. Suppose that an exception-

ally good student from classroom A is exchanged for an exceptionally bad student from

classroom B. Assume the classrooms are of equal sizes. From a social welfare or total

output prospective, the positive peer effects for the students in B are exactly offset by

the negative peer effects for the students in classroom A.
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Second, from an empirical point of view, researchers have found that peer effects

are not in fact linear-in-means. If anything, there tend to be complementarities of

the type that would support schools using various forms of tracking policies. Some of

the available evidence suggests that the most able students benefit from having more

high ability students around, while the least able students are actually harmed by adding

high ability peers and removing lower ability peers. Hoxby and Weingarth (2005),

Burke and Sass (2008), Lavy, Paserman, and Schlosser (2007), Cooley (2009), and

Imberman, Kugler, and Sacerdote (2009) all find this form of complementarity in ele-

mentary and secondary schools using test scores as the outcome. Hanushek and Rivkin

(2009) find that test score growth for high achieving black students is helped by

increases in the proportion of whites in their school and grade. At the university level,

Sacerdote (2001) finds some evidence that high ability students benefit each other more

than high ability students benefit average or low ability students.

Fortunately Equation (4.1) can be expanded to allow both student i’s position in the

ability (or background characteristic) distribution to matter and to allow for different

peer effects to stem from different possible changes to the peer group. The identifica-

tion problems that plague nonlinear estimations are not much worse than the funda-

mental problems of identification inherent to the linear-in-means model. (See the

next section for a discussion.)

Duncan et al. (2005) and Sacerdote (2001) take a very simple approach to testing for

possible nonlinearities in peer effects. These two papers group student i into one of several

possible categories and i’s peers (in this case roommates) into categories and then include in

the regression all possible interactions of student i’s type and i’s roommate’s type. In the

case of Duncan et al., student i binge drank in high school or did not, and i’s roommate

either binge drank in high school or did not, implying that there are four possible cate-

gories. The outcome investigated (i.e., the left-hand-side variable) is binge drinking epi-

sodes per month in college. In other words, Duncan et al. run the following regression:

Yi ¼ aþ l1 � ðDi ¼ 0 �D�i ¼ 0Þ þ l2 � ðDi ¼ 1 �D�i ¼ 1Þ þ l3

�ðDi ¼ 0 �D�i ¼ 1Þ þ ei
ð4:2Þ

Here Yiis student i’s number of binge drinking episodes per month in college and Di

and D-i are dummies for whether i and i’s roommate binge drank in high school. After

running the regression, it is then a simple matter to hold student i’s type constant and

test whether student i has more drinking episodes in college with versus without a

roommate who drank in high school. For example, testing whether l2 ¼ 0 asks

whether students who drank in high school have more episodes with a roommate

who drank in high school versus without such a roommate.

Hoxby and Weingarth (2005) use a similar approach in testing for nonlinear peer

effects among third through eighth grade students, but they havemanymore possible cate-

gories of student type and peer type. They divide students into deciles of past test score
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performance. They then interact student i’s decile of previous score with the percent of i’s

peers (classmates) falling into each of the 10 deciles. This generates 100 interaction terms.

The coefficients on these interaction terms allow the authors to test a wide variety of

hypotheses about peer effects. For instance, one can ask whether high ability students

benefit from being in a class with a higher proportion of high ability students. Similarly

one can ask whether low ability (as measured by past test scores) students benefit the most

from having classmates in the lowest, middle, or upper part of the test score distribution.

And one can ask whether high ability classmates provide more externalities for students

who are themselves at the lower, middle, or upper part of the test score distribution.

Hoxby and Weingarth provide a nice categorization of different possible theories of

peer effects, as shown in Table 4.1.

A model is categorized as having homogenous effects if magnitude of the peer effect

is constant for all student types i. Categorization is from Hoxby and Weingarth (2005)

and Lazear (2001).

This provides a summary of possible ways in which peer effects in a classroom

might work. Among the most discussed models are the bad apple model and the bou-

tique model. In the bad apple model (Lazear (2001)), the most relevant peer effects are

those provided by the least academically able or least disciplined student in the class-

room. This student provides large negative externalities in several possible ways: The

bad apple peer may cause so much commotion in the classroom as to distract the

teacher and students from productive tasks. Or he may encourage additional raucous

or disruptive behavior among other students. Or the bad apple may not be a discipline

problem but he may simply have low ability and require extra teaching attention,

thereby detracting from the experience of the other students.
Table 4.1 Possible models of peer effects

Model
Homogenous
effects? Description

Linear-in-means Yes Only the mean of peers background or outcomes matters

Bad apple Yes One disruptive student harms everyone

Shining light Yes One excellent student provides great example for all

Invidious

Comparison

No Outcomes are harmed by the presence of better

achieving peers

Boutique/

tracking

No Students perform best when surrounded by others like

themselves

Focus Yes Classroom homogeneity is good, regardless of student i’s

ability relative to the homogenous classmates

Rainbow Yes Classroom heterogeneity is good for everyone

Single crossing No Positive effects from high ability classmate is weakly

monotonically increasing in own ability
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In the boutiquemodel, students benefit from being around other students with a similar

ability. One possibility is that a classroom with more homogeneity enables the teacher to

customize thematerial and the pace of learning to that particular group of students. Another

possible mechanism for the boutique model is that students can best learn from each other

when the students are of similar ability or are working on similar material. The boutique

model is perhaps the main justification behind tracking students into classroom by ability.

Note that in the boutique model, the less able students are helped more by the presence

of peers like themselves than they are helped by the presence of high ability peers.

Some of the othermodels are certainly possible from a theoretical point of view butmay

be less important froman empirical point of view.The rainbowmodel suggests that diversity

of ability is good for all students. This notion seems contrary to the experience of many tea-

chers and contrary to some (but not all) recent evidence on tracking. Furthermore the rain-

bowmodel can not explainwhymany if notmost high schools in theU.S. use some formof

tracking. The shining light model is interesting and is the opposite of the bad apple model.

But it is somewhat more difficult to think of ways in which a great student could raise her

classmates’ achievement than it is to think of ways in which a terrible student could harm

an entire classroom (Lazear (2001)). The invidious comparisonmodel suggests that students

are harmed by the presence of better students in the same classroom.
3. IDENTIFICATION OF PEER EFFECTS

As detailed in Manski (1993) and Brock and Durlauf (2001), the fundamental challenge

for the peer effects literature is identification. One can imagine at least three reasons

why running an OLS regression for Equation (4.1) would be problematic. First, since

student i’s outcome (Yi) affects his peers’ mean outcome (Y�i) and vice versa, b1 is

subject to endogeneity bias. Manski labeled this the reflection problem. Second, in

most settings peers self select into peer groups or classrooms in a manner that is unob-

served to the econometrician. Frequently there is positive selection in which similar

people join or are assigned to the same group. This positive selection could cause sub-

stantial upward bias in the estimated magnitude of peer effects b1 and g2. Manski

labeled the influence of selection the correlated effect.

Third, Equation (4.1) includes effects that stem both from peers’ average outcome

(Y�i) and peers’ average background characteristics (X�i). Manski labeled the former

the endogenous effects and the latter exogenous (or contextual) effects. Separate identifi-

cation of b1 and g2 is difficult since peer background itself affects peer outcome. Even if

one has exogenous variation in peer background characteristics (as in many of the room-

mates papers, such as Sacerdote (2001) and Zimmerman (2003) or as in Hoxby (2000b)),

that does not imply that both coefficients are separately identified. Note that endogenous

effects have the potential for social multipliers since a small change for student i will affect

the peer group which will then reflect back to student I, and so on.
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The modern peer effects literature has managed to overcome some but not neces-

sarily all of these challenges. As noted in the introduction, the most commonly used

approaches are 1) to include student level and/or school level fixed effects in an effort

to control for selection into peer groups, and 2) to rely on some form of exogenous

shock to peer-group composition. That said, most papers have one source of exogene-

ity and do not separately identify the exogenous and endogenous peer effects.

Hoxby (2000b) was one of the first papers to look for some exogenous shock to

peer group composition. The key source of variation is idiosyncratic changes in the

gender mix across cohorts within a given elementary school. Increases in the fraction

of girls in the cohort lead to increases in mean peer test scores. Other papers within pri-

mary and secondary education also rely on exogenous shocks to peer group composi-

tion or more directly on random or quasi-random assignment of students to classrooms.

Vigdor and Nechyba (2007) make the case that the assignment of students to class-

rooms within their sample of North Carolina schools is fairly random. Boozer and

Cacciola (2001) use experimental variation from Project Star as a source of variation

in peer ability.6 Duflo, Dupas, and Kremer (2008) created a randomized experiment

in which some students are assigned to tracked (i.e., more homogenous) classrooms

and others are not. Peer ability is generally measured by using peers’ prior test scores.

A group of papers at the university level relies on random assignment of roommates,

dormmates, or squadron members to generate random variation in peer groups. These

papers include Sacerdote (2001), Zimmerman (2003), Carrell, Fullerton, and West

(2008), Foster (2006), Stinebrickner and Stinebrickner (2006), Lyle (2007), and

Siegfried and Gleason (2006). The central identification in these papers stems from the

idea that university policies generate random variation in the makeup of peer groups.

Removing or controlling for the selection of students into peer groups is an important

step in being able to identify peer effects. As noted above, this is not the same as being able

to separately identify b1 and g2. Most of the above papers estimate the reduced form

effects of changes in peer groups and do not tackle the question of whether the peer effects

identified stem from exogenous or endogenous effects. In other words, most authors do

not attempt to estimate the structural parameters b1 and. Some authors including Boozer

and Cacciola (2001), Case and Katz (1991), and Gaviria and Raphael (2001) assume that

peer background does not enter directly (i.e., g2¼ 0 or no contextual effects). Under this

assumption, one can potentially identify the magnitude of endogenous effects.

Bramoullé, Djebbari, and Fortin (2009) show that one can identify both b1 and

g2 if one assumes that an individual’s outcome is affected by that person’s friends’ back-

ground but not the background of the friends of the person’s friends. Thus the
6 Project STAR (Student Teacher Achievement Ratio) was a large scale randomized experiment carried out in 79

schools in Tennessee. Students were randomly assigned to a large (22–25) student classroom, a small (13–17) student

classroom, or a large classroom with the addition of a full-time teacher aide.
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background of the friends’ friends (those with whom the individual does not have

direct contact) can serve as an instrument for the friends’ endogenous outcome.

A second approach to dealing with selection into peer groups has been to control

for characteristics of individual students and schools. Often this means including stu-

dent fixed effects and school fixed effects and identifying peer effects using cohort to

cohort variation within school. The papers using this approach include Betts and

Zau (2004) and Lavy, Paserman, and Schlosser (2007). Hanushek, Kain, Markman,

and Rivkin (2003) include school-by-grade fixed effects and hence use classroom-to-

classroom level variation within a school and grade. Burke and Sass (2008) include

teacher fixed effects too. The basic concept in these papers is that the student, school,

or school-by-grade fixed effects remove selection effects and allow the researcher to

identify peer effects from idiosyncratic variation in peer ability. Again, in most of these

papers the ability of classmates is generally calculated using peers’ prior test scores.

In the case of Lavy, Paserman, and Schlosser (2007), peer background is the average

of a dummy variable for whether a classmate skipped or repeated a grade.

3.1 Identification Using Excess Variance
There is also a different methodology which uses the variance in mean outcomes across

groups to detect the presence of social interactions (peer effects). Glaeser, Sacerdote,

and Scheinkman (1996) show that imitationwithin groups generatesmore variation across

group means than would be expected if individuals were making independent decisions.7

Graham (2008) uses excess variance plus experimental variation to estimate the size of peer

effects within the Project Star data. Like the majority of papers described above, Graham is

interested in estimating the reduced formeffect of classmates’ incoming abilitywhichhe labels

g. Keeping the notation consistent with Equation (4.1), Graham’s reduced form is:

Yi ¼ aþ g � X�i þ ei ð4:3Þ
where Yi is student i’s test score and X�i are i’s classmates’ incoming scores. His insight is

that social interactions will generate more between classroom level variation in the out-

come Y than would be predicted given individual level heterogeneity in student ability.

Inmost settings onewould be concerned that sorting into classrooms or teacher effects

would also generate excess variance inmean outcomes at the classroom level.However, in

the Project Star data, students are randomly assigned to small versus large classrooms and

Graham is able to use this fact to difference out the excess variance that comes from sorting

or teacher effects. Specifically he shows that a consistent estimate of g2 equals

EðGb
c jsmallÞ � EðGb

c jbigÞ
EðGw

c jsmallÞ � EðGw
c jbigÞ

ð4:4Þ
7 The paper then proceeds to estimate the level of social interactions present in various forms of crime at the level of

cities and police precincts.
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where Gb
c and Gw

c are the between and within variance in outcomes for a classroom.

In other words, an estimate of the social interaction parameter squared is the ratio of

the between classroom to the within, where the between has been “inflated” by social

interactions. And we first difference across the randomly assigned small versus big class-

room category to account for nonsocial interaction factors which cause the between

variation to be larger than the within.

Related to the Graham approach are the Glaeser and Scheinkman (2001) and

Glaeser, Sacerdote, and Scheinkman (2003) papers which define the social multiplier

as the ratio of the individual effect from an exogenous shock to the aggregate effect

from the same exogenous shock. The intuition is that a small exogenous change at

the individual level is magnified through the social interactions process to deliver the

larger aggregate level coefficient. For a concrete example, think of the individual

student level effect on achievement from giving some students extra teacher attention.

Now consider a classroom level regression in which we calculate the effect on achieve-

ment from giving entire classrooms of students the additional teacher attention. If there

are no social interactions (and no sorting into treatment status) the individual and

aggregate coefficients should be the same and the social mutiplier is 1.0.

We suggest two related approaches for calculating the social multiplier. One is to

simply take a ratio of an aggregate level coefficient to the corresponding individual

coefficient. In the above example, the exogenous shift considered is an increase in

teacher attention. At the individual level, one could regress test scores (Yi) on a dummy

for receiving extra attention (Xi). This same regression could be run at the classroom

level in which we regress classroom average test scores for classroom c, Y c on the aver-

age number of students in c who received the treatment, that is, Xc. The ratio of the

classroom level coefficient to the individual level coefficient is by definition the social

multiplier. Our second approach (which works well when there are many right-hand-

side variables) is to use coefficients from an individual level regression to predict

aggregate level outcomes. We then regress actual aggregate level outcomes on these

predicted values and the coefficient from this second regression is the social multiplier.

Recovering the social interactions parameter from the social multiplier: Suppose we

allow b to be the social interactions parameter, that is, the effect of average group level

actions Y�i on own action (Yi). If there is no sorting into groups and we take the

aggregate coefficient for a sufficiently large group size N, then the social multiplier

equals 1/(1- b). When there is sorting into groups based on an observable X, then

we define s ¼ VarðX Þ
VarðXiÞ which is the share of total variation in X explained by variation

at the group level. We show that as the group size gets large, the social multiplier con-

verges to 1/[(1-b)*(1þsb)]. Thus in either formulation, b can be calculated once the

size of the social multiplier is known.

The social multiplier approach is useful for three reasons. First, it is easy to calculate

and need not impose a specific functional form for peer effects. Second, for some
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research questions it delivers the parameter of direct interest to researchers or policy

makers, namely if policy can exogenously induce one additional person to take action

A, how many total people will take action A in equilibrium? Third, under some strong

assumptions the social multiplier approach can take into account sorting into groups or

locations.
4. EMPIRICAL RESULTS ON PEER EFFECTS IN PRIMARY AND
SECONDARY EDUCATION

A major focus of the literature has been on peer effects in test scores for students in pri-

mary and secondary school. Table 4.2 shows estimated peer effects from a number of

studies. The estimates encompass a large range. There are, however, two consistent

themes: First studies using gender variation find larger effects. These studies generally

conclude that increases in “percent female” help peer achievement through more

channels than simply raising average classroom test scores. Second, there appear to be

important nonlinearities. Several but not all studies find that reductions in peer hetero-

geneity improve outcomes and that students at the high end of the ability distribution

experience the largest peer effects from high ability peers.

Hoxby (2000b) relies on random variation in the gender and racial makeup of peers

to provide estimates of peer effects. She uses data from students in all Texas elementary

schools in grades 3–6. Her outcome measure is performance on the Texas Assessment

of Academic Skills (TAAS). Her strategy relies on the fact that within a school and

grade level, cohort level variation in gender and racial composition is an unexpected

shock to peer achievement. Girls on average score about a half a standard deviation

higher than boys on the TAAS reading test, and hence changes in class composition

do represent a significant shock to peer achievement.

Hoxby finds that a 10 percentage point rise in cohort percentage female is asso-

ciated with boys reading scores being 0.04 to 0.08 test points higher. The positive

effects of percent female on girls reading scores are similar in magnitude. Translating

this into an effect of peer scores on own scores, she finds that an increase in the peer

average reading score of 1.0 raises own reading score by 0.3 to 0.5 points.

When she performs a similar analysis (using gender variation) for math scores she

finds a much larger peer effect coefficient of a 1.7 to 6.8 increase in own math score

for every 1.0 increase in peer (cohort) average score. Because this figure is so large,

she concludes that the effects of percent female likely work through additional channels

beyond a simple increase in peer average test scores.

Hoxby also considers the effects of cohort level shocks to racial composition. She

finds that peer effects are largest intra-race, meaning that altering the percentage black

has the largest peer effect on black students.



Table 4.2 Peer effects in test scores for primary and secondary schools linear in means models

Paper Sample Identification
Effect of a 1.0 point move in average
peer score**

Hoxby (2000b) Texas Schools Project Identified using within-school cohort-

to-cohort variation in gender and

racial makeup

using gender variation

Grades 3–6 Reading: 0.3 to 0.5

Math: 1.7 to 6.8

Using racial variation

(intra-group)

Reading 0.68

Math: 0.40

Lavy and Schlosser

(2007)

Israeli primary, middle,

high school students

Within-school variation in percent

female

Matriculation exam score for males:

1.06; for females: 0.84

Whitmore (2005) Tennessee elementary

students in Project

STAR

Random assignment of students to

classrooms

0.60

Boozer and Cacciola

(2001)

Tennessee elementary

students in Project

STAR

Instrument for peer mean using

experimentally created variation

1st grade: 0.30

2nd grade: 0.86

3rd grade: 0.92

Angrist and Lang (2004) Brookline students Iowa

Test of Basic Skills.

Grades 3,5,7

Effects of Metco students in Brookline,

MA on non-Metco students

On all non-Metco1

core IATB: 0.21

On black non-Metco

core IATB: 1.375

Continued



Table 4.2 Peer effects in test scores for primary and secondary schools linear in means models—cont'd

Paper Sample Identification
Effect of a 1.0 point move in average
peer score**

Vigdor and Nechyba

(2007)

North Carolina 5th graders Limit sample to schools that appear to

use quasi-random assignment;

include school and year fixed effects

and teacher effects

Reading: �0.10

Math: �0.12

Betts and Zau (2004) San Diego public school

students grades 2–11

Estimate effects on gains; include

student fixed effects

Reading: 1.40

Math 1.9

Burke and Sass (2008) Florida students grades

3–10

Student and teacher fixed effects Reading: 0.014 to 0.068

Math: 0.04

Hanushek, Kain,

Markman, and

Rivkin (2003)

Texas Schools Project Student fixed effects Math: 0.17

Hoxby and Weingarth

(2005)

Wake County North

Carolina

Exogenous reassignments due to school

desegregation

0.242

Ammermueller and

Pischke (2006)

Students in Germany,

France, Iceland, the

Netherlands, Norway,

and Sweden

School fixed effects 0.11

Carman and Zhang

(2008)

Chinese elementary school

students

Randomly assigned classrooms; teacher

effects and student effects

Math: 0.40

English: �0.03

Chinese: 0.26

Lefgren (2004) Chicago public schools

grades 3 and 6

Uses school tracking policies as an

instrument for peer ability

Math grade 6: 0.032

Reading grade 6: 0.027

**Most papers have standardized the test scores to be mean zero variance 1. This is not required, though, to compare coefficients across papers. The effects of racial
composition from Hoxby (2000) are the effects on black students of changing the cohort’s percentage black. Intra-race effects are larger than cross race effects. 1. Angrist and
Lang’s results are not statistically significant. These effects are translated by me into a peer effect coefficient using the calculation described in the text. 2. This is from Hoxby
and Weingarth’s baseline linear-in-means specification.
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Lavy and Schlosser (2007) also find large effects from percent girls within a class-

room and they also interpret these effects as working through more than simply

increasing peer average test scores. The authors report effects on a wide range of out-

comes. Table 4.2 is limited to reporting their effects on average scores on matriculation

exams. For females the effect of percent female on average matriculation score has an

effect of 5.3. Since females on average score about 6.3 points better, this implies a peer

coefficient (b1) of 5.3/6.3 ¼ 0.84. The corresponding calculation for males yields an

estimated b1 of 1.06.

Lavy and Schlosser’s additional results suggest that much of the effect of percent

female is working through reductions in classroom violence and disruption and

through improvements in inter-student and student–teacher relationships.

Kramarz, Machin, and Ouazad (2008) have the complete census (National Regis-

ter) of children in English public schools and identify peer effects using movers. For

second graders the authors find that a 10% increase in the percentage of boys reduces

test scores by 0.004 standard deviations.

Whitmore (2005) exploits experimental variation in Project Star to examine sepa-

rately the effects from percent female and the effects from having higher achieving

peers. She finds that each 1.0 randomly generated increase in peer percentile score

raises a student’s own percentile score by 0.6. And having a predominantly female class

has an independent positive effect of 1.3 percentile points.

Boozer and Cacciola (2001) use the random assignment of peers in Project Star and

argue that much of Project STAR’s class size effect is working through peer effects.

Their insight is that entry and exit from the classrooms in the experiment caused some

peers to be treated longer than others and that this generates experimental variation in

peer quality. The authors find coefficients on peers’ mean test score of 0.30, 0.86, and

0.92 for the first, second, and third graders respectively.

Angrist and Lang (2004) use Boston’s “Metco” busing program as an exogenous

source of variation in peer ability. Their sample includes 443 Boston area schools,

141 of which receive Metco students. Their outcome measures are MCAS scores

and Iowa Test of Basic Skills scores. Using all schools in their sample, they find that

percentage Metco in a suburban school has no statistically significant effect on the non-

bused (i.e., local) students in the school.

When the authors examine Brookline schools specifically and performance on the

Iowa Test of Basic Skills, they find peer effects from Metco students which are negative

in the point estimates though the estimates are not generally statistically significant.

A 10% increase in percent Metco lowers the percentile ranking (for non-Metco students)

on the IATB by a statistically insignificant 0.5 percentile points. This same change in

percent Metco lowers peer average test scores by 2.4 percentile points. Together these

numbers imply a peer effect coefficient of 0.21. Limiting the sample to just black

non-Metco students yields a larger implied peer coefficient of �3.3/�2.4 ¼ 1.375.
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In a similar spirit, Imberman, Kugler, and Sacerdote (2009) examine peer effects of

HurricaneKatrina evacuees on nonevacuee students inHouston and Louisiana. They find

modest peer effects which are greatest for students at the lowest quintile of the test score

distribution. As noted above, when they allow for nonlinearities, their estimated peer

effects are much larger. If 10% of the school is composed of evacuees from the top quartile

of the English Language Arts (ELA) test score distribution, “native” students from the top

quartile of the test score distribution have an ELA test score gain of 0.2 standard deviations.

These same high achieving native students experience a drop of 0.3 standard deviations in

their ELA score in response to a 10% inflow of low achieving (bottom quartile) evacuees.

In addition to exploiting experiments and natural experiments, another method of

identifying peer effects is to calculate the effects of peer test scores while including

school, school by year, or student level fixed effects to control for the sorting of stu-

dents into schools. Typically peer mean ability is measured as mean performance on

a prior year’s standardized test.

Betts and Zau (2004) use data from the San Diego Unified School district. They use

test score gains as their dependent variable and they employ student level fixed effects

to control for positive selection (tracking) of students into classrooms. They find a coef-

ficient on the peer mean reading score of 1.4 and a coefficient on peer math score of

1.9. They also find some evidence of nonlinearities in which the average student is hurt

more by low achieving peers than she is helped by high achieving peers.

Hanushek, Kain, Markman, and Rivkin (2003) utilize data from the Texas Schools

Project. They use student gains in the TAAS as their dependent variable and they

include student fixed effects. They find a peer effect coefficient (b1) of 0.17 for math

scores. Furthermore they find that the peer effect is similar across quartiles of a student’s

initial position in the test score distribution, though students in the highest quartile do

show a smaller peer effect.

Burke and Sass (2008) follow a similar approach and include both student fixed

effects and teacher effects. For math scores, they estimate that a 1.0 increase in peer

mean achievement raises own achievement by 0.04. For reading, the effect varies from

0.014 to 0.068. But, when the authors allow the effects to vary by student type, the

estimated effects are much larger. For example, elementary students in the lowest third

of past performance experience a gain of 0.82 points for every 1.0 gain in peer achieve-

ment. Peer effects are somewhat smaller for students in the middle third of the distri-

bution and smaller still for students in the highest third. As the authors note, these

results suggest that tracking does not maximize total output of test scores, but rather

high ability students should be spread among classrooms.

In contrast to some of the above studies, Vigdor and Nechyba’s (2007) results call into

question themethodology of using school fixed effects to identify peer coefficients. These

authors have data on all NorthCarolina public school students during 1994/1995 through

2000/2001. Within that set, they include school and year fixed effects.
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In their baseline “naı̈ve” school fixed effects approach, Vigdor and Nechyba find

that a 1.0 standard deviation increase in peer mean reading score yields a 0.05 to

0.07 standard deviation increase in a student’s own reading score. The comparable

effect for math is 0.06 to 0.08. Of equal interest, the authors find strong support for

the hypothesis that increasing dispersion of peers mean scores raises own test score.

However both of these results flip signs (and are negative and statistically significant)

when the authors include teacher fixed effects. Furthermore, in a falsification exercise

Vigdor and Nechyba find that 5th grade peers appear to improve 4th grade test out-

comes in their baseline specification. These results lead the authors to conclude that

simple measures of peer effects may actually be driven by teacher effects or by selection

into classrooms.

Several additional studies estimate linear-in-means models outside the U.S. Ammer-

mueller and Pischke (2006) use data encompassing six European countries and find an

average coefficient on peer achievement (b1) of 0.11. With a sample of Chinese elemen-

tary school students assigned randomly to classrooms, Carman and Zhang (2008) find

coefficients of 0.4 for math scores,�0.03 for English scores, and 0.26 for Chinese scores.

McEwan (2003) finds large effects from peers’ background characteristics in a sample of

8th graders in Chile. Both Gibbons and Telhaj (2008) and Lavy, Silva, and Weinhardt

(2009) find no evidence of linear-in-means effects for secondary school students in the

U.K. Both of these papers use the full set of U.K. students at age 14 for several recent

cohorts. They use Key Stage 2 national test scores (age 11) to measure peer inputs and

Key Stage 3 national test scores (age 14) to measure outcomes.

4.1 More on Nonlinear Effects and Tracking
Hoxby and Weingarth (2005) proceed to a more general estimation of nonlinear

effects. The authors rely on Wake County North Carolina’s school reassignment poli-

cies which sought to even out disparities in average student backgrounds at each

school. The authors instrument for actual peer groups using the peer groups that would

be have been generated due to the reassignment rules. They allow the magnitude of

peer effects to vary both by a student’s own position in the test score distribution and

by which part of the peer test score distribution is being increased. Specifically they

interact own test score decile with the percentage of peers in each test score decile.

Hoxby and Weingarth find support for the boutique model of peer effects. Students

in deciles 9 and 10 of the test score distribution benefit strongly from adding peers in

the highest deciles. Students in the bottom decile benefit most from adding peers in

deciles 2 and 3. The authors also find some evidence for the focus model, which is

to say that students can be harmed by heterogeneity in their peers even when addi-

tional hetereogeneity might be giving the student additional peers more like herself.

Cooley (2009) provides further evidence of large nonlinearities in peer effects. She

finds that the magnitude of peer effects experienced by student i differs both by student
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i’s race and by student i’s achievement and by peers’ level of achievement. And she

finds that high achieving students benefit the most from high achieving peers. Gibbons

and Telhaj (2008) find that test scores for low achieving students in the U.K. are

harmed by the presence of high achieving students while upper-middle achieving stu-

dents benefit from the presence of high achieving students.

Lavy, Silva, and Weinhardt (2009) reach slightly different conclusions about nonlin-

ear peer effects. These authors find that all students are harmed by the presence of the

lowest achieving peers (those in the bottom 5%). However, only high achieving girls

are helped by the presence of other high achieving (top 5%) peers.

Many of the results on nonlinearities are consistent with a world inwhich tracking stu-

dents into classrooms by ability raises total student output relative to a set of untracked

classrooms. This seems quite plausible, particularly given that tracking has been a feature

of school systems for so long despite its potential to appear anti-egalitarian. This pro-

tracking result is somewhat at odds with what Burke and Sass (2008) found (namely that

low ability students benefit the most from high average peer ability) and Vigdor and

Nechyba’s (2007) result that classroom heterogeneity raises scores.

Roughly half of the research addressing tracking specifically finds positive effects from

the policy.Using an experiment inKenya,Duflo,Dupas, andKremer (2008) find that stu-

dents in tracked classrooms experienced test score gains of 0.14 standard deviations relative

to students in untracked classrooms. And the effect persists for at least one year following

the elimination of the program. Lavy, Paserman, and Schlosser (2007) find that high

achieving students benefit from the presence of other high achieving students in the class-

roomwhile the high achieving students do not help average students. On the other hand,

Betts and Shkolnick (2000) find little support for benefits from tracking. Lefgren (2004)

reaches the same conclusion using data on 3rd and 6th graders in the Chicago Public

Schools. He uses tracking status as an instrument for peer group ability and he finds very

small linear-in-means peer effects, and hence few benefits from tracking.

Peers may also influence the aspirations of students. Jonsson and Mood (2008)

examine Swedish secondary school students and find that having very high achieving

peers depresses the desire to attend university for average students.

4.2 Effects of Racial Composition
Peer effects may of course stem from peer characteristics other than measured achieve-

ment. The evidence suggests that peer racial composition is strongly correlated with

own achievement. For example there is a burgeoning literature on “acting white” that

posits that some black students may underachieve in order to fit in with their peers

(Austen-Smith and Fryer (2005), Fordham and Ogbu (1986), Ogbu (2003)).8 Fryer
8 Cook and Ludwig (1997) do not find that average attitudes toward academic success differ between black and white

students.
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and Torelli (2010) find that a student’s popularity is negatively associated with her aca-

demic grades for the highest achieving black students. They also find that the acting

white effect does not exist in schools with a high proportion black, perhaps because

the market for social interactions with other high achieving black students is thick in

such schools.

Using data from the Texas Schools Project, Hanushek, Kain, and Rivkin (2009)

find that black students’ test scores are strongly decreasing in the fraction black in the

school. To identify the effects of racial composition, they rely on variation in the frac-

tion black within a school over time. A 10 percentage point increase in the

fraction black is associated with own test scores that are roughly 0.02 standard devia-

tions lower. The fraction black also affects test scores for white students but the coeffi-

cients are half as large. This makes sense if we believe that many more peer interactions

take place within race than across race.9 The authors point out that differences in

racial makeup across Texas schools can account for 10–20% of the black-white

test score gap. Hanushek and Rivken (2009) go on to show that the effects of racial

composition are highly nonlinear. Black students in the top quartile of the achievement

distribution (based on prior years’ scores) are affected much more negatively by the

school fraction black than are black students in the lower half of the test score

distribution.

There are numerous channels through which peer effects from racial composition

may occur. It is possible that teachers lower their expectations or the level at which

they teach as the fraction black in a school rises. Or maybe there is an acting white

effect for black students which increases as the proportion black rises.
4.3 Effects Working through Classroom Disruption
Lazear (2001) suggests that the most significant effects are negative ones emanating

from disruptive peers and, as noted above, Lavy and Schlosser (2007) agree that disrup-

tion (or lack thereof) is a key mechanism. Perhaps the most innovative paper on this

topic is Figlio (2005) which finds that the presence of boys with female sounding

names increases classroom disruption and decreases test scores for students in that class-

room. Similarly, Carrell and Hoekstra (2008) show that the classroom presence of chil-

dren exposed to domestic violence raises classroom discipline problems and lowers

math and reading test scores. Adding an additional troubled boy to a classroom raises

the probability that another boy commits a disciplinary infraction by 17% and lowers

test scores by two percentile points.
9 Marmaros and Sacerdote (2006) and Mayer and Puller (2008) both measure the relative frequency of within- versus

cross-race interactions.
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5. GOING BEYOND TEST SCORES

The above studies document the existence of peer effects in test scores, though with

considerable disagreement as to the magnitudes. Effects on nontest score outcomes

for youth are quite possibly larger and the existence of such effects less controversial.

Case and Katz (1991) instrument for peer average actions using peer family background

and find large peer effects in drug use, gang membership, and criminal activity. For

instance, when own drug use is the dependent variable, the effect of peer average drug

use is 0.32.

Gaviria and Raphael (2001) perform a similar analysis using students in the same

school and grade in the National Education Longitudinal Survey (NELS). They find

strong peer effects in drug use, alcohol drinking, cigarette smoking, church going,

and the likelihood of dropping out of high school. Their coefficient on peer group

average drug use is 0.25. Kooreman (2003) finds a very similar coefficient when look-

ing at the effect of classmate alcohol expenditure on own alcohol expenditure in a sam-

ple of Dutch students.10

Evans, Oates, and Schwab (1992) consider peer effects in teen pregnancy and

dropping out of school. They find that naı̈ve estimates of peer effects are overstated

and that once they control for selection into peer groups their estimated effects disap-

pear. Similarly Krauth (2005) finds that estimated peer effects on smoking are reduced

by a factor of three once he controls for selection into friendship groups. His preferred

estimator suggests that having an additional friend who smokes leads to a 5 percentage

point increase in the prevalence of own smoking. Mihaly (2008) estimates that having

one additional friend who smokes is associated with a 9 percentage point increase in

own prevalence of smoking.

Eisenberg (2004) uses the Adolescent Health Survey and considers the experiment

of a substance-using friend moving away (relocating). He finds that the moving away

of a friend who uses marijuana leads to a 12% reduction in the probability of own

marijuana use.

Argys and Rees (2008) look at the effects of having older peers in the same grade.

Using NLSY97 data they examine students in grades 6–12 and find that having older

peers increases the use of alcohol, marijuana, and cigarettes. Controlling for own age,

being in the younger half of the peer group raises the likelihood of drinking by 3.5 per-

centage points.

Bobonis and Finan (2009) are able to use experimental variation from Mexico’s

PROGRESA program to measure the degree to which peer participation in school

raises own participation. A 10 percentage point increase in peer participation raises

own participation rates by 5 percentage points.
10 Kooreman also finds large peer effects in time allocated to certain activities including studying and part-time jobs.
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Kremer, Miguel, and Thornton (2009) is another paper that identifies peer effects

by taking advantage of experimental variation in a developing country context. The

experiment discussed in the paper gave girls financial incentives to perform well on

exams. But the experiment also had large spillover effects on the boys in the same

schools despite the boys not being eligible for the cash rewards. In the experimental

treatment group, girls’ scores rose on average by 0.29 standard deviations while (the

ineligible) boys’ scores rose by 0.16 standard deviations.

Some of the most interesting and convincing evidence on peer effects in social out-

comes comes from the Moving to Opportunity (MTO) Experiment (Katz, Kling, and

Liebman (2001) and Kling, Ludwig, and Katz (2005)). MTO randomly offered some

low-income families an incentive to move to a census tract with a lower poverty rate

than the initial census tract. Results from the experiment show that girls in families

offered such a voucher showed decreased arrests for violent and property crimes while

results for boys were more mixed.
6. EFFECTS IN POST-SECONDARY EDUCATION

Post-secondary education boasts its own literature on peer effects though the empirical

approaches and outcomes examined differ a bit from the literature on younger students.

A host of papers have utilized the random assignment of students into housing units in

order to examine the effects of roommates, dormmates, and squadron members on

own outcomes.

Sacerdote (2001) examines the effects of roommates and dormmates on college GPA

and the likelihood of joining a fraternity. Roommate academic ability has a modest

impact on own academic performance. For example, assigning a student a roommate

who was in the top 25% of incoming admissions scores will raise the student’s freshman

year GPA by 0.06. Several other studies find either no effect from roommates on aca-

demic outcomes or modest effects. Foster (2006) finds no effect from randomly assigned

roommates at the University of Maryland. Zimmerman (2003) finds that roommate ver-

bal SAT matters more than math SAT. He finds that students are harmed somewhat by

being assigned a roommate in the bottom 15% of the distribution. Hoel, Parker, and

Rivenburg (2005) find strong nonlinear effects from roommates and no detectable effects

from peers in the same classroom.11 Stinebrickner and Stinebrickner (2006) shows that

roommate ACT is less important than roommate high school GPA and that a peer effect

on hours spent studying in college may be the mediating influence. Fletcher and Tienda

(2008) find that college students benefit from having more peers who attended their same

high school, presumably because such peers serve as a support network.
11 Martins and Walker (2006) and Parker, Grant, Crouter, and Rivenburg (2008) also find no evidence of classroom

peers on own grades.
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Several other papers look for peer effects within squadrons at the U.S. Military

Academy (Lyle (2007)) and U.S. Air Force Academy (Carrell, Fullerton, and West

(2008)). These contexts are particularly interesting because the Academies enforce a

great deal of interaction within squadrons. Lyle finds that there are peer effects in first

year GPA, but that common shocks in the form of the upperclassmen in the squadron

may account for half or more of the estimated “peer effect.” Carrell, Fullerton, and

West find large peer effects on first year GPA at the Air Force Academy and they attri-

bute this finding to the unique setting in which the true peer group is well-measured.

Brunello, De Paola and Scoppa (2010) use data from a university in Italy and exam-

ine how course grades are influenced by peers enrolled in the same course. They find

that a one standard deviation in classmate ability is associated with a 0.08 standard devi-

ation increase in own grades.

A variety of the papers move beyond college GPA as the outcome of interest and

find some very interesting and statistically significant effects of peers. Duncan, Boisjoly,

Kremer, Levy, and Eccles (2005) use randomly assigned roommates to examine peer

effects in drinking, marijuana use, and sexual activity. Among male students who binge

drank in high school, assigning them a roommate who also binge drank in high school

leads to a fourfold increase in the number of binge drinking episodes per month. There

is no evidence of a comparable effect for females. The peer effects on number of sexual

partners are smaller and not robust to changes in specification, and the peer effects on

marijuana use are small and statistically insignificant. DeSimone (2007) finds that after

controlling for selection into fraternity membership, being a fraternity member raises

the frequency of binge drinking by 15 to 20 percentage points. And Wilson (2007)

finds large peer effects in smoking.

In subsequent work, Duncan, Boisjoly, Kremer, Levy, and Eccles investigate

whether having a minority roommate or a high income roommate affects student atti-

tudes one year after initial room assignment. White students assigned a black roommate

report support for affirmative action that is one half to two thirds of a standard devia-

tion higher (on a four-point scale) than white students assigned nonblack roommates.

More generally, students assigned minority roommates are more likely to report that

they are comfortable interacting with people of a different race or ethnicity. Students

assigned a high income roommate are one-third of a standard deviation less likely to

support the statement that “wealthy people should pay more taxes.”

Carrell, Malmstrom, and West (2008) examine peer effects in academic cheating at

West Point. They find that adding a student who cheated in high school to the college

class results in an additional 0.33 to 0.47 cheaters in the college cohort.

Finally, Sacerdote (2001) finds large peer effects in whether or not students join fra-

ternities or sororities and large effects in which specific Greek organization that they

join. If a roommate joins a fraternity, a student is 8% more likely to do so. Moving
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the student from a dorm in which no one joins to a dorm in which everyone joins

raises the likelihood of the student joining a fraternity by 32%.

Perhaps most interesting from the perspective of labor economists is the question

of whether peers are important in the career or job selection process. In Marmaros and

Sacerdote (2002), we define an indicator for whether or not a student takes a high paying

job, defined as finance, consulting or law, as her first job.We regress the student’s outcome

on the average outcome for the student’s randomly assigned first-year dormmates and we

find a statistically significant coefficient of 0.24. We also find that students rely heavily on

their peers and their peers’ parents in the job search process. Arcidiacono and Nicholson

(2005) examine peer effects in specialty choice amongmedical students and they find little

evidence of peer effects. De Giorgi, Pellizzari, and Redaelli (2007) find that a student’s

peers at Bocconi have a significant impact on choice of major. This paper uses the novel

identification strategy of relying on the background of an individual’s peers’ peers as an

instrument for the peers outcome (major choice).

Overall the literature on peer effects at the university level is fairly consistent. First, most

authors find small peer effects in GPA from roommates. One key exception is the Air Force

Academy study which is from a unique environment. Measured peer effects in GPAwould

likely be larger at other institutions if we knew the true peer group rather than limiting our-

selves to roommates. There aremuch larger effects on social outcomes like drinking, cheat-

ing, and fraternity joining. And there is some evidence that peers are important for career

choice. One next logical step may be the designing of experiments to see whether the peer

effects measured in observational data can be exploited by university administrators to max-

imize GPA or some other objective. Carrell, Fullerton, and West (2009) find some nonli-

nearities in the peer effects at Air Force and they are currently running an experiment to

see if the “optimal” allocation of cadets to squadrons improves GPA and physical fitness

scores.

Another strand of the literature uses detailed data on interactions among university stu-

dents to look for patterns of social interaction and to learn about the determinants of who is

friends withwhom.Marmaros and Sacerdote (2006) do this using email data andMayer and

Puller (2008) use Facebook.comdata. The conclusions from the two studies are remarkably

consistent. There is very strong same-race attraction in the determination of friendships,

with black students being 10 to 20 times more likely to interact with another black students

than a nonblack student. And proximity matters a great deal. Students who share a first-year

dorm are four times more likely to interact than students who do not.
7. CONCLUSIONS

Recent years have brought a flurry of attention to the modeling and measurement of

peer effects in education at the primary, secondary, and university levels. Within the

university literature, there is a fair amount of agreement that peer effects from
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roommates and dormmates in determining GPA likely exist but are modest in size. In

contrast, the peer effects in determining certain social outcomes (drinking, fraternity

joining, political attitudes) are a fair bit larger and potentially peer effects are a major

determinant of such outcomes.

The jury is still out on the exact size of peer effects in primary and secondary school

test scores. The studies detailed in Table 4.2 encompass a fairly large range of estimates.

However, many researchers agree that the linear-in-means model (the focus of

Table 4.2) is probably not the most interesting model anyway. The more interesting

question is whether there are nonlinearities that make policies like tracking of students

into classrooms a really good or a really bad idea. Hoxby and Weingarth (2005) is the

benchmark study in this regard, though many of the other studies discussed here also

test for nonlinearities and in some cases find substantial nonlinear effects. For instance

Burke and Sass (2008) find that low achieving students benefit more from high ability

peers than do high achieving students, and Vigdor and Nechyba (2007) find that class-

room heterogeneity is good for test scores.

There is broad agreement that increasing the number of girls in the classroom is

associated with less disruption and higher test scores. And the effects are big enough

that the effects likely work through more than just increases in peer mean scores.

The result that more boys translates to more violence seems to fit with the personal

experience of many authors, though fortunately does not point to any obvious policy

prescription.

Most parents and students behave as if peer effects matter a great deal and the find-

ings of the literature are consistent with this. As Winston and Zimmerman (2003) note,

students are both consumers of the educational product and part of the production

function. Tracking by ability is in such widespread use that it would not be surprising

if future studies find more evidence that is consistent with the boutique and focus mod-

els, which imply benefits from tracking.

While directions for future research are not entirely obvious, the summary pre-

sented here may give us some hints. Additional data with exogenous assignment of stu-

dents to classrooms would help clarify the size and nonlinear nature of peer effects in

elementary and secondary school. Actual experiments will allow us to learn whether

peer effects in observational data can truly be exploited by policy makers. And more

work that identifies the true peer group, as opposed to the peer group we can measure

may cause us to revise upward our estimates of the importance of peer effects.

There are several major questions that researchers and policy makers should address

in the coming years. First, now that we have measured the existence and importance of

peer effects for a variety of outcomes, how large are these peer effects relative to the

influences of teacher quality, school quality, and home environment? Second, can

measured peer effects actually be exploited by policy makers in order to increase total

learning or to decrease criminal behavior or drug use? In researching peer effects have
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we been describing and studying an important policy tool or rather is this a part of

human behavior that is worth understanding but not particularly relevant for policy?

And following the Coleman Report’s (1966) prescient writing, how much can we

actually benefit disadvantaged students by changing the peer group with whom these

students interact?
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